AB-INITIO HEATS OF FORMATION OF MEDIUM-SIZED HYDROCARBONS. 4. PERHYDROTRIQUINACENE Jerome M. Schulman^{*} and Raymond L. Disch Department of Chemistry, City University of New York Queens College, Flushing, New York 11367

Summary: The ΔH_{f} of perhydrotriquinacene is obtained from that of adamantane and their enthalpy of isomerization computed by ab initio SCF methods, with corrections for zero-point and thermal effects.

As molecular mechanics is increasingly employed in the study of molecular energetics, it is desirable to examine cases in which its predictions differ from experiment. This note considers perhydrotriquinacene (I), tricyclo[$5.2.1.0^{4,10}$] decane, for which molecular mechanics gives heats of formation of -23.74 (EAS)^{1a}, -19.74 (MMI)^{1a}, -22.07 (MM2)^{1b,1c} and -23.46 (WB)^{2a} kcal/mol. The experimental value is $-24.47 \pm .86$ kcal/mol².

We have recently reported ab initio calculation of ΔH_{f} for the perhydrotriquinacene isomer, adamantane³; here we calculate the energy difference between (I) and (II), and correct for zeropoint energy differences and enthalpy changes in going from from 0 K to 298 K. This enthalpy of isomerization, when combined with the experimental ΔH_f of adamantane, furnishes that of perhydro-triquinacene, also of formula $(CH_2)_6(CH)_4$.

The geometry of perhydrotriquinacene was optimized in the STO-3G^{4a} basis set for both C_3 (Ia) and C_{3v} (Ib) symmetries using gradient methods; their energies are -383.4994 and -383.4837 au, respectively (that of adamantane is -383.5155 au, slightly lower than reported previously³ due to improved optimization). The geometric parameters for I are given in Table I. SCF calculations in the 6-31G* basis set^{4b} at these geometries give: -388.0098 au, -387.9875 au, and -388.0259 au for (Ia), (Ib), and (II), respectively; the latter value is only 0.6 kcal/mol higher than that corresponding to the 6-31G*-optimized geometry.

The ab initio energy changes for the isomerization of (I) to (II) are:10.1 and 10.2 kcalmol⁻¹ at the STO-3G and 6-31G* levels, respectively (before rounding). To correct for differences in zero-point energies and to change ΔH from 0 K to 298 K, we computed the vibrational frequencies of (I) and (II) using the molecular mechanics method of Warshel and Lifson⁵. This yields zero-point energies for adamantane and perhydrotriquinacene of 149.6 and 147.4 kcal/mol, the former value comparing favorably with 148.9 and 148.6 kcal/mol calculated from the frequencies of adamantane given by Cyvin. et al.⁶ and by Snyder and Schactschneider^{6b}, respectively; Boyd, et al.⁷ reported the zero-point energy of (II) to be 149.29 kcal/mol. In assessing the accuracy of the 2.2 kcal/mol difference in zero-point energies, it is noteworthy that Boyd, et al.⁷ find that the zero-point energy of tetrahydrodicyclopentadiene (with two fused cyclopentanes rather than the present three) is 1.1 kcal/mol lower than that of adamantane. Also, our empirical formula for the zero-point energies of hydrocarbons gives 146.5 kcal/mol for $C_{10}H_{16}^{-8}$, within 1 kcal/mol of the value for (I).

The frequencies also enable calculation of $H_{298 \text{ K}} - H_{0 \text{ K}}$ for each isomer in the harmonic oscillator and ideal gas approximations, giving 5.5 kcal/mol and 5.0 kcal/mol for (I) and (II), respectively. Thus, ΔH (298 K) for the transformation of (I) to (II) is computed as: -10.2 + (149.6 - 147.4) + (5.0 - 5.5) =-8.5 kcal/mol. Using the experimental value for adamantane, -32.51 kcal/mol⁹, ΔH_f (298 K) of perhydrotriquinacene is -24.0 kcal/mol, in good agreement with the experimental value, -24.47[±].86 kcal/mol².

The C_{3v} isomer is considerably higher in energy than (Ia). Osawa^{1C} and Ermer^{1d} report more than one conformational minimum for perhydrotriquinacene; the global minimum is of C_3

Table I. Geometrical Parameters of Perhydrotriquinacene in C_3 and C_{3v} Symmetry ^a Obtained from the STO-3G Basis Set									
 Ia (C ₃)						Ib (C _{3v})			
				Bond L	ength (A)				
c1c10	1.557	C2 ^H 2n	1.08	7		^c 1 ^c 10	1.555	C2H2n	1.086
C1C2	1.547	C2H2x	1.08	В		c1c2	1.557	C_2H_{2x}	1.087
C ₂ C ₃	1.544	C3 ^H 3n	1.08	7		°2°3	1.552	^C 10 ^H 10	1.087
c ₃ c ₄	1.552	C3H3x	1.08	7		с ₁ н ₁	1.088		
Bond Angle (Degrees)									
C ₂ C ₁ C ₁₀	105.3	н,с,с	2	110.9		^C 2 ^C 1 ^C 10	107.4	H _{2x} C ₂	c, 110.1
C ₃ C ₄ C ₁₀	105.6	нιсін	- 10	111.1		H1C1C10	109.7	H _{2x} C ₂	c ₃ 110.3
C1C10C4	107.3	H _{3n} C ₃	C ₄	110.2		^C 1 ^C 10 ^C 4	107.4	H _{2n} C ₂	c ₁ 110.8
H _{2n} C ₂ C ₁	112.5	H _{3n} C3	с ₂	109.8		H ₁₀ C ₁₀ C	1 110.2	H _{2n} C2	C ₃ 110.5
H _{2n} C ₂ C ₃	112.4	^н зх ^С з	C ₄	112.0					
H _{2x} C ₂ C1	109.6	H _{3x} C ₃	c2	112.3					
H _{2x} C ₂ C ₃	109.8	^H 10 ^C 1	0 ^C 1	111.6					
			Tors	ion Ang	le (Degree	es)			
c1c2c3c	4 -35.	,5				c1c2c30	C ₄ 0.0		
C ₂ C ₃ C ₄ C ₁₀ 26.6						c10 ^{C1C}	2 ^C 3 -1.8		
^c 3 ^c 4 ^c 10 ^c 1 -7.7						c3c4c11	^{C1} -2.9		
^C 4 ^C 10 ^C 1	c ₂ -14.	.0							
^c 10 ^c 1 ^c 2	с _з зо.	.4							

a. The hydrogens are numbered in the same manner as the carbons to which they are attached. The subscripts n and x refer to hydrogens pointing toward and away from the cup-shaped carbon cavity, respectively. symmetry while the C_{3v} structure is found to be a maximum^{1d}. The present 6-31G* ab initio energy difference between the C_3 and C_{3v} structures, 14.0 kcal/mol is in good agreement with the Ermer and Osawa molecular mechanics values, 12 and 13 kcal/mol, respectively.

Acknowledgments: This research was supported in part by the PSC-CUNY Research Award Program of the City University of New York, grant no. 663228. We acknowledge a grant of computing time from the City University Committee on Research Computing. We thank Dr. N. E. Schlotter for a copy of his version of the Warshel molecular mechanics program. Finally, we are pleased to acknowledge several interesting discussions with Prof. N. L. Allinger.

References

- (a) E. M. Engler, J. D. Andose and P. v. R. Schleyer, <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. 95, 8005 (1973);
 (b) N. L. Allinger, <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. 99, 8127 (1977);
 (c) E. Osawa, <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. 101, 5523 (1979);
 (d) O. Ermer, "Aspekte von Kraftfeldrechnungen", Wolfgang Baur Verlag, Munchen (1981), p. 404.
- (a) T. Clark, T. McO. Knox, M. A. McKervey, H. Mackle, and J. J. Rooney, <u>J. Am. Chem.</u> <u>Soc</u>. 101, 2404 (1979); (b) T. Clark, T. McO. Knox, H. Mackle, and M. A. McKervey, J. Chem. Soc., Chem. Commun. 666 (1975).
- 3. J. M. Schulman and R. L. Disch, J. Am. Chem. Soc. 106, 1202 (1984).
- (a) W. J. Hehre, R. F. Stewart, and J. A. Pople, <u>J. Chem</u>. <u>Phys</u>. 51, 2657 (1969); (b)
 P. C. Hariharan and J. A. Pople, <u>Chem</u>. <u>Phys</u>. <u>Lett</u>. 16, 217 (1972).
- (a) S. Lifson and A. Warshel, <u>J. Chem. Phys.</u> 49, 5116 (1979); (b) E. Huler, R. Sharon, and A. Warshel, QCPE Program 247, University of Indiana, Bloomington.
- (a) S. J. Cyvin, B. N. Cyvin and J. Brunvoll in "Molecular Structures and Vibrations",
 S. J. Cyvin, Ed., Elsevier, Amsterdam, 1972; (b) R. G. Snyder and J. H.
 Schactschneider, Spectrochim. Acta, 21, 169 (1965).
- 7. R. H. Boyd, S. N. Sanwal, S. Shakrokh-Tehrany, and D. McNally, <u>J. Phys. Chem</u>, 75, 1264 (1971).
- 8. J. M. Schulman and R. L. Disch, Chem. Phys. Lett. 113, 291 (1985).
- 9. Unpublished value of Dr. M. Mansson. See footnote 12 of ref. 3. (Received in USA 25 July 1985)